[EPA Home | Federal Register Home | Comments | Search ]


Federal Register Document








[Federal Register: July 18, 1997 (Rules and Regulations)]



[Page 38752-38760]



From the Federal Register Online via GPO Access [wais.access.gpo.gov]



[DOCID:fr18jy97-18]







[[pp. 38752-38760]] National Ambient Air Quality Standards for Particulate Matter







[[Continued from page 38751]]







[[Page 38752]]







[GRAPHIC] [TIFF OMITTED] TR18JY97.051







[[Page 38753]]







    7. Appendix M is added to read as follows:







Appendix M to Part 50--Reference Method for the Determination of



Particulate Matter as PM10 in the Atmosphere







1.0  Applicability.



    1.1  This method provides for the measurement of the mass



concentration of particulate matter with an aerodynamic diameter



less than or equal to a nominal 10 micrometers (PM1O) in



ambient air over a 24-hour period for purposes of determining



attainment and maintenance of the primary and secondary national



ambient air quality standards for particulate matter specified in



Sec. 50.6 of this chapter. The measurement process is



nondestructive, and the PM10 sample can be subjected to



subsequent physical or chemical analyses. Quality assurance



procedures and guidance are provided in part 58, Appendices A and B



of this chapter and in references 1 and 2 of section 12.0 of this



appendix.



2.0  Principle.



    2.1  An air sampler draws ambient air at a constant flow rate



into a specially shaped inlet where the suspended particulate matter



is inertially separated into one or more size fractions within the



PM10 size range. Each size fraction in the



PM1O size range is then collected on a separate filter



over the specified sampling period. The particle size discrimination



characteristics (sampling effectiveness and 50 percent cutpoint) of



the sampler inlet are prescribed as performance specifications in



part 53 of this chapter.



    2.2 Each filter is weighed (after moisture equilibration) before



and after use to determine the net weight (mass) gain due to



collected PM10. The total volume of air sampled, measured



at the actual ambient temperature and pressure, is determined from



the measured flow rate and the sampling time. The mass concentration



of PM10 in the ambient air is computed as the total mass



of collected particles in the PM10 size range divided by



the volume of air sampled, and is expressed in micrograms per actual



cubic meter (g/m3).



    2.3  A method based on this principle will be considered a



reference method only if the associated sampler meets the



requirements specified in this appendix and the requirements in part



53 of this chapter, and the method has been designated as a



reference method in accordance with part 53 of this chapter.



3.0  Range.



    3.1  The lower limit of the mass concentration range is



determined by the repeatability of filter tare weights, assuming the



nominal air sample volume for the sampler. For samplers having an



automatic filter-changing mechanism, there may be no upper limit.



For samplers that do not have an automatic filter-changing



mechanism, the upper limit is determined by the filter mass loading



beyond which the sampler no longer maintains the operating flow rate



within specified limits due to increased pressure drop across the



loaded filter. This upper limit cannot be specified precisely



because it is a complex function of the ambient particle size



distribution and type, humidity, filter type, and perhaps other



factors. Nevertheless, all samplers should be capable of measuring



24-hour PM10 mass concentrations of at least 300



g/m\3\ while maintaining the operating flow rate within the



specified limits.



4.0  Precision.



    4.1  The precision of PM10 samplers must be 5



g/m\3\ for PM10 concentrations below 80



g/m\3\ and 7 percent for PM10 concentrations



above 80 g/m\3\, as required by part 53 of this chapter,



which prescribes a test procedure that determines the variation in



the PM10 concentration measurements of identical samplers



under typical sampling conditions. Continual assessment of precision



via collocated samplers is required by part 58 of this chapter for



PM10 samplers used in certain monitoring networks.



5.0  Accuracy.



    5.1  Because the size of the particles making up ambient



particulate matter varies over a wide range and the concentration of



particles varies with particle size, it is difficult to define the



absolute accuracy of PM10 samplers. Part 53 of this



chapter provides a specification for the sampling effectiveness of



PM10 samplers. This specification requires that the



expected mass concentration calculated for a candidate



PM10 sampler, when sampling a specified particle size



distribution, be within 10 percent of that calculated



for an ideal sampler whose sampling effectiveness is explicitly



specified. Also, the particle size for 50 percent sampling



effectiveness is required to be 100.5 micrometers. Other



specifications related to accuracy apply to flow measurement and



calibration, filter media, analytical (weighing) procedures, and



artifact. The flow rate accuracy of PM10 samplers used in



certain monitoring networks is required by part 58 of this chapter



to be assessed periodically via flow rate audits.



6.0  Potential Sources of Error.



    6.1  Volatile Particles. Volatile particles collected on filters



are often lost during shipment and/or storage of the filters prior



to the post-sampling weighing \3\. Although shipment or storage of



loaded filters is sometimes unavoidable, filters should be reweighed



as soon as practical to minimize these losses.



    6.2  Artifacts. Positive errors in PM10 concentration



measurements may result from retention of gaseous species on filters



4, 5. Such errors include the retention of sulfur dioxide



and nitric acid. Retention of sulfur dioxide on filters, followed by



oxidation to sulfate, is referred to as artifact sulfate formation,



a phenomenon which increases with increasing filter alkalinity \6\.



Little or no artifact sulfate formation should occur using filters



that meet the alkalinity specification in section 7.2.4 of this



appendix, Artifact nitrate formation, resulting primarily from



retention of nitric acid, occurs to varying degrees on many filter



types, including glass fiber, cellulose ester, and many quartz fiber



filters 5, 7, 8, 9, 10. Loss of true atmospheric




particulate nitrate during or following sampling may also occur due



to dissociation or chemical reaction. This phenomenon has been



observed on Teflon&127 filters \8\ and inferred for quartz



fiber filters 11, 12. The magnitude of nitrate artifact



errors in PM10 mass concentration measurements will vary



with location and ambient temperature; however, for most sampling



locations, these errors are expected to be small.



    6.3  Humidity. The effects of ambient humidity on the sample are



unavoidable. The filter equilibration procedure in section 9.0 of



this appendix is designed to minimize the effects of moisture on the



filter medium.



    6.4  Filter Handling. Careful handling of filters between



presampling and postsampling weighings is necessary to avoid errors



due to damaged filters or loss of collected particles from the



filters. Use of a filter cartridge or cassette may reduce the



magnitude of these errors. Filters must also meet the integrity



specification in section 7.2.3 of this appendix.



    6.5  Flow Rate Variation. Variations in the sampler's operating



flow rate may alter the particle size discrimination characteristics



of the sampler inlet. The magnitude of this error will depend on the



sensitivity of the inlet to variations in flow rate and on the



particle distribution in the atmosphere during the sampling period.



The use of a flow control device, under section 7.1.3 of this



appendix, is required to minimize this error.



    6.6  Air Volume Determination. Errors in the air volume



determination may result from errors in the flow rate and/or



sampling time measurements. The flow control device serves to



minimize errors in the flow rate determination, and an elapsed time



meter, under section 7.1.5 of this appendix, is required to minimize



the error in the sampling time measurement.



7.0  Apparatus.



    7.1  PM10 Sampler.



    7.1.1  The sampler shall be designed to:



    (a) Draw the air sample into the sampler inlet and through the



particle collection filter at a uniform face velocity.



    (b) Hold and seal the filter in a horizontal position so that



sample air is drawn downward through the filter.



    (c) Allow the filter to be installed and removed conveniently.



    (d) Protect the filter and sampler from precipitation and



prevent insects and other debris from being sampled.



    (e) Minimize air leaks that would cause error in the measurement



of the air volume passing through the filter.



    (f) Discharge exhaust air at a sufficient distance from the



sampler inlet to minimize the sampling of exhaust air.



    (g) Minimize the collection of dust from the supporting surface.



    7.1.2  The sampler shall have a sample air inlet system that,



when operated within a specified flow rate range, provides particle



size discrimination characteristics meeting all of the applicable



performance specifications prescribed in part 53 of this chapter.



The sampler inlet shall show no significant wind direction



dependence. The latter requirement can generally be satisfied by an



inlet shape that is circularly symmetrical about a vertical axis.



    7.1.3  The sampler shall have a flow control device capable of



maintaining the sampler's operating flow rate within the flow rate



limits specified for the sampler inlet over normal variations in



line voltage and filter pressure drop.







[[Page 38754]]







    7.1.4  The sampler shall provide a means to measure the total



flow rate during the sampling period. A continuous flow recorder is



recommended but not required. The flow measurement device shall be



accurate to 2 percent.



    7.1.5  A timing/control device capable of starting and stopping



the sampler shall be used to obtain a sample collection period of 24



1 hr (1,440 60 min). An elapsed time meter,



accurate to within 15 minutes, shall be used to measure



sampling time. This meter is optional for samplers with continuous



flow recorders if the sampling time measurement obtained by means of



the recorder meets the 15 minute accuracy specification.



    7.1.6  The sampler shall have an associated operation or



instruction manual as required by part 53 of this chapter which



includes detailed instructions on the calibration, operation, and



maintenance of the sampler.



    7.2  Filters.



    7.2.1  Filter Medium. No commercially available filter medium is



ideal in all respects for all samplers. The user's goals in sampling



determine the relative importance of various filter characteristics,



e.g., cost, ease of handling, physical and chemical characteristics,



etc., and, consequently, determine the choice among acceptable



filters. Furthermore, certain types of filters may not be suitable



for use with some samplers, particularly under heavy loading



conditions (high mass concentrations), because of high or rapid



increase in the filter flow resistance that would exceed the



capability of the sampler's flow control device. However, samplers



equipped with automatic filter-changing mechanisms may allow use of



these types of filters. The specifications given below are minimum



requirements to ensure acceptability of the filter medium for



measurement of PM10 mass concentrations. Other filter



evaluation criteria should be considered to meet individual sampling



and analysis objectives.



    7.2.2  Collection Efficiency. 99 percent, as measured



by the DOP test (ASTM-2986) with 0.3 m particles at the



sampler's operating face velocity.



    7.2.3  Integrity. 5 g/m\3\ (assuming



sampler's nominal 24-hour air sample volume). Integrity is measured



as the PM10 concentration equivalent corresponding to the



average difference between the initial and the final weights of a



random sample of test filters that are weighed and handled under



actual or simulated sampling conditions, but have no air sample



passed through them, i.e., filter blanks. As a minimum, the test



procedure must include initial equilibration and weighing,



installation on an inoperative sampler, removal from the sampler,



and final equilibration and weighing.



    7.2.4  Alkalinity. <25 microequivalents/gram of filter, as measured by the procedure given in reference 13 of section 12.0 of this appendix following at least two months storage in a clean environment (free from contamination by acidic gases) at room temperature and humidity. 7.3 Flow Rate Transfer Standard. The flow rate transfer standard must be suitable for the sampler's operating flow rate and must be calibrated against a primary flow or volume standard that is traceable to the National Institute of Standard and Technology (NIST). The flow rate transfer standard must be capable of measuring the sampler's operating flow rate with an accuracy of 2



percent.



    7.4  Filter Conditioning Environment.



    7.4.1  Temperature range. 15 to 30 C.



    7.4.2  Temperature control. 3 C.



    7.4.3  Humidity range. 20% to 45% RH.



    7.4.4  Humidity control. 5% RH.



    7.5  Analytical Balance. The analytical balance must be suitable



for weighing the type and size of filters required by the sampler.



The range and sensitivity required will depend on the filter tare



weights and mass loadings. Typically, an analytical balance with a



sensitivity of 0.1 mg is required for high volume samplers (flow



rates >0.5 m\3\/min). Lower volume samplers (flow rates <0.5 m\3\/ min) will require a more sensitive balance. 8.0 Calibration. 8.1 General Requirements. 8.1.1 Calibration of the sampler's flow measurement device is required to establish traceability of subsequent flow measurements to a primary standard. A flow rate transfer standard calibrated against a primary flow or volume standard shall be used to calibrate or verify the accuracy of the sampler's flow measurement device. 8.1.2 Particle size discrimination by inertial separation requires that specific air velocities be maintained in the sampler's air inlet system. Therefore, the flow rate through the sampler's inlet must be maintained throughout the sampling period within the design flow rate range specified by the manufacturer. Design flow rates are specified as actual volumetric flow rates, measured at existing conditions of temperature and pressure (Qa).



    8.2  Flow Rate Calibration Procedure.



    8.2.1 PM10 samplers employ various types of flow



control and flow measurement devices. The specific procedure used



for flow rate calibration or verification will vary depending on the



type of flow controller and flow rate indicator employed.



Calibration is in terms of actual volumetric flow rates



(Qa) to meet the requirements of section 8.1 of this



appendix. The general procedure given here serves to illustrate the



steps involved in the calibration. Consult the sampler



manufacturer's instruction manual and reference 2 of section 12.0 of



this appendix for specific guidance on calibration. Reference 14 of



section 12.0 of this appendix provides additional information on



various other measures of flow rate and their interrelationships.



    8.2.2  Calibrate the flow rate transfer standard against a



primary flow or volume standard traceable to NIST. Establish a



calibration relationship, e.g., an equation or family of curves,



such that traceability to the primary standard is accurate to within



2 percent over the expected range of ambient conditions, i.e.,



temperatures and pressures, under which the transfer standard will



be used. Recalibrate the transfer standard periodically.



    8.2.3  Following the sampler manufacturer's instruction manual,



remove the sampler inlet and connect the flow rate transfer standard



to the sampler such that the transfer standard accurately measures



the sampler's flow rate. Make sure there are no leaks between the



transfer standard and the sampler.



    8.2.4  Choose a minimum of three flow rates (actual m\3\/min),



spaced over the acceptable flow rate range specified for the inlet,



under section 7.1.2 of the appendix, that can be obtained by



suitable adjustment of the sampler flow rate. In accordance with the



sampler manufacturer's instruction manual, obtain or verify the



calibration relationship between the flow rate (actual m\3\/min) as



indicated by the transfer standard and the sampler's flow indicator



response. Record the ambient temperature and barometric pressure.



Temperature and pressure corrections to subsequent flow indicator



readings may be required for certain types of flow measurement



devices. When such corrections are necessary, correction on an



individual or daily basis is preferable. However, seasonal average



temperature and average barometric pressure for the sampling site



may be incorporated into the sampler calibration to avoid daily



corrections. Consult the sampler manufacturer's instruction manual



and reference 2 in section 12.0 of this appendix for additional



guidance.



    8.2.5  Following calibration, verify that the sampler is



operating at its design flow rate (actual m\3\/min) with a clean



filter in place.



    8.2.6  Replace the sampler inlet.



9.0  Procedure.



    9.1  The sampler shall be operated in accordance with the



specific guidance provided in the sampler manufacturer's instruction



manual and in reference 2 in section 12.0 of this appendix. The



general procedure given here assumes that the sampler's flow rate



calibration is based on flow rates at ambient conditions



(Qa) and serves to illustrate the steps involved in the



operation of a PM10 sampler.



    9.2  Inspect each filter for pinholes, particles, and other



imperfections. Establish a filter information record and assign an



identification number to each filter.



    9.3  Equilibrate each filter in the conditioning environment



(see 7.4) for at least 24 hours.



    9.4  Following equilibration, weigh each filter and record the



presampling weight with the filter identification number.



    9.5  Install a preweighed filter in the sampler following the



instructions provided in the sampler manufacturer's instruction



manual.



    9.6   (a) Turn on the sampler and allow it to establish run-



temperature conditions. Record the flow indicator reading and, if



needed, the ambient temperature and barometric pressure. Determine



the sampler flow rate (actual m\3\/min) in accordance with the



instructions provided in the sampler manufacturer's instruction



manual.



    (b) Note: No onsite temperature or pressure measurements are



necessary if the sampler's flow indicator does not require



temperature or pressure corrections or if seasonal average



temperature and average barometric pressure for the sampling site



are incorporated into







[[Page 38755]]







the sampler calibration, under section 8.2.4 of this appendix. If



individual or daily temperature and pressure corrections are



required, ambient temperature and barometric pressure can be



obtained by on-site measurements or from a nearby weather station.



Barometric pressure readings obtained from airports must be station



pressure, not corrected to sea level, and may need to be corrected



for differences in elevation between the sampling site and the



airport.



    9.7  If the flow rate is outside the acceptable range specified



by the manufacturer, check for leaks, and if necessary, adjust the



flow rate to the specified setpoint. Stop the sampler.



    9.8  Set the timer to start and stop the sampler at appropriate



times. Set the elapsed time meter to zero or record the initial



meter reading.



    9.9  Record the sample information (site location or



identification number, sample date, filter identification number,



and sampler model and serial number).



    9.10  Sample for 241 hours.



    9.11  Determine and record the average flow rate (Qa)



in actual m\3\/min for the sampling period in accordance with the



instructions provided in the sampler manufacturer's instruction



manual. Record the elapsed time meter final reading and, if needed,



the average ambient temperature and barometric pressure for the



sampling period, in note following section 9.6 of this appendix.



    9.12  Carefully remove the filter from the sampler, following



the sampler manufacturer's instruction manual. Touch only the outer



edges of the filter.



    9.13  Place the filter in a protective holder or container,



e.g., petri dish, glassine envelope, or manila folder.



    9.14  Record any factors such as meteorological conditions,



construction activity, fires or dust storms, etc., that might be



pertinent to the measurement on the filter information record.



    9.15  Transport the exposed sample filter to the filter



conditioning environment as soon as possible for equilibration and



subsequent weighing.



    9.16  Equilibrate the exposed filter in the conditioning



environment for at least 24 hours under the same temperature and



humidity conditions used for presampling filter equilibration (see



section 9.3 of this appendix).



    9.17  Immediately after equilibration, reweigh the filter and



record the postsampling weight with the filter identification



number.



10.0  Sampler Maintenance.



    10.1  The PM10 sampler shall be maintained in strict



accordance with the maintenance procedures specified in the sampler



manufacturer's instruction manual.



11.0  Calculations.







    11.1 Calculate the total volume of air sampled as:







V = Qat







where:







V = total air sampled, at ambient temperature and



pressure,m3;







Qa = average sample flow rate at ambient temperature and



pressure, m3/min; and







t = sampling time, min.







    11.2   (a) Calculate the PM10 concentration as:







PM10 = (Wf-Wi) x 10\6\/V







where:







PM10 = mass concentration of PM10, g/



m\3\;







Wf, Wi = final and initial weights of filter



collecting PM1O particles, g; and







10\6\ = conversion of g to g.







    (b) Note: If more than one size fraction in the



PM10 size range is collected by the sampler, the sum of



the net weight gain by each collection filter



[(Wf-Wi)] is used to calculate the



PM10 mass concentration.



12.0  References.



    1. Quality Assurance Handbook for Air Pollution Measurement



Systems, Volume I, Principles. EPA-600/9-76-005, March 1976.



Available from CERI, ORD Publications, U.S. Environmental Protection



Agency, 26 West St. Clair Street, Cincinnati, OH 45268.



    2. Quality Assurance Handbook for Air Pollution Measurement



Systems, Volume II, Ambient Air Specific Methods. EPA-600/4-77-027a,



May 1977. Available from CERI, ORD Publications, U.S. Environmental



Protection Agency, 26 West St. Clair Street, Cincinnati, OH 45268.



    3. Clement, R.E., and F.W. Karasek. Sample Composition Changes



in Sampling and Analysis of Organic Compounds in Aerosols. Int. J.



Environ. Analyt. Chem., 7:109, 1979.



    4. Lee, R.E., Jr., and J. Wagman. A Sampling Anomaly in the



Determination of Atmospheric Sulfate Concentration. Amer. Ind. Hyg.



Assoc. J., 27:266, 1966.



    5. Appel, B.R., S.M. Wall, Y. Tokiwa, and M. Haik. Interference



Effects in Sampling Particulate Nitrate in Ambient Air. Atmos.



Environ., 13:319, 1979.



    6. Coutant, R.W. Effect of Environmental Variables on Collection



of Atmospheric Sulfate. Environ. Sci. Technol., 11:873, 1977.



    7. Spicer, C.W., and P. Schumacher. Interference in Sampling



Atmospheric Particulate Nitrate. Atmos. Environ., 11:873, 1977.



    8. Appel, B.R., Y. Tokiwa, and M. Haik. Sampling of Nitrates in



Ambient Air. Atmos. Environ., 15:283, 1981.



    9. Spicer, C.W., and P.M. Schumacher. Particulate Nitrate:



Laboratory and Field Studies of Major Sampling Interferences. Atmos.



Environ., 13:543, 1979.



    10. Appel, B.R. Letter to Larry Purdue, U.S. EPA, Environmental



Monitoring and Support Laboratory. March 18, 1982, Docket No. A-82-



37, II-I-1.



    11. Pierson, W.R., W.W. Brachaczek, T.J. Korniski, T.J. Truex,



and J.W. Butler. Artifact Formation of Sulfate, Nitrate, and



Hydrogen Ion on Backup Filters: Allegheny Mountain Experiment. J.



Air Pollut. Control Assoc., 30:30, 1980.



    12. Dunwoody, C.L. Rapid Nitrate Loss From PM10



Filters. J. Air Pollut. Control Assoc., 36:817, 1986.



    13. Harrell, R.M. Measuring the Alkalinity of Hi-Vol Air



Filters. EMSL/RTP-SOP-QAD-534, October 1985. Available from the U.S.



Environmental Protection Agency, EMSL/QAD, Research Triangle Park,



NC 27711.



    14. Smith, F., P.S. Wohlschlegel, R.S.C. Rogers, and D.J.



Mulligan. Investigation of Flow Rate Calibration Procedures



Associated With the High Volume Method for Determination of



Suspended Particulates. EPA-600/4-78-047, U.S. Environmental



Protection Agency, Research Triangle Park, NC 27711, 1978.



    8. Appendix N is added to read as follows:







Appendix N to Part 50--Interpretation of the National Ambient Air



Quality Standards for Particulate Matter







1.0 General.



    (a) This appendix explains the data handling conventions and



computations necessary for determining when the annual and 24-hour



primary and secondary national ambient air quality standards for PM



specified in Sec. 50.7 of this chapter are met. Particulate matter



is measured in the ambient air as PM10 and



PM2.5 (particles with an aerodynamic diameter less than



or equal to a nominal 10 and 2.5 micrometers, respectively) by a



reference method based on Appendix M of this part for



PM10 and on Appendix L of this part for PM2.5,



as applicable, and designated in accordance with part 53 of this



chapter, or by an equivalent method designated in accordance with



part 53 of this chapter. Data handling and computation procedures to



be used in making comparisons between reported PM10 and



PM2.5 concentrations and the levels of the PM standards



are specified in the following sections.



    (b) Data resulting from uncontrollable or natural events, for



example structural fires or high winds, may require special



consideration. In some cases, it may be appropriate to exclude these



data because they could result in inappropriate values to compare



with the levels of the PM standards. In other cases, it may be more



appropriate to retain the data for comparison with the level of the



PM standards and then allow the EPA to formulate the appropriate



regulatory response. Whether to exclude, retain, or make adjustments



to the data affected by uncontrollable or natural events is subject



to the approval of the appropriate Regional Administrator.



    (c) The terms used in this appendix are defined as follows:



    Average and mean refer to an arithmetic mean.



     Daily value for PM refers to the 24-hour average concentration



of PM calculated or measured from midnight to midnight (local time)



for PM10 or PM2.5.



    Designated monitors are those monitoring sites designated in a



State PM Monitoring Network Description for spatial averaging in



areas opting for spatial averaging in accordance with part 58 of



this chapter.



    98th percentile (used for PM2.5) means the



daily value out of a year of monitoring data below which 98 percent



of all values in the group fall.







[[Page 38756]]







    99th percentile (used for PM10) means the



daily value out of a year of monitoring data below which 99 percent



of all values in the group fall.



    Year refers to a calendar year.



    (d) Sections 2.1 and 2.5 of this appendix contain data handling



instructions for the option of using a spatially averaged network of



monitors for the annual standard. If spatial averaging is not



considered for an area, then the spatial average is equivalent to



the annual average of a single site and is treated accordingly in



subsequent calculations. For example, paragraph (a)(3) of section



2.1 of this appendix could be eliminated since the spatial average



would be equivalent to the annual average.



2.0 Comparisons with the PM2.5 Standards.



    2.1 Annual PM2.5 Standard.



    (a) The annual PM2.5 standard is met when the 3-year



average of the spatially averaged annual means is less than or equal



to 15.0 g/m3. The 3-year average of the



spatially averaged annual means is determined by averaging quarterly



means at each monitor to obtain the annual mean PM2.5



concentrations at each monitor, then averaging across all designated



monitors, and finally averaging for 3 consecutive years. The steps



can be summarized as follows:



    (1) Average 24-hour measurements to obtain quarterly means at



each monitor.



    (2) Average quarterly means to obtain annual means at each



monitor.



    (3) Average across designated monitoring sites to obtain an



annual spatial mean for an area (this can be one site in which case



the spatial mean is equal to the annual mean).



    (4) Average 3 years of annual spatial means to obtain a 3-year



average of spatially averaged annual means.



    (b) In the case of spatial averaging, 3 years of spatial



averages are required to demonstrate that the standard has been met.



Designated sites with less than 3 years of data shall be included in



spatial averages for those years that data completeness requirements



are met. For the annual PM2.5 standard, a year meets data



completeness requirements when at least 75 percent of the scheduled



sampling days for each quarter have valid data. However, years with



high concentrations and more than a minimal amount of data (at least



11 samples in each quarter) shall not be ignored just because they



are comprised of quarters with less than complete data. Thus, in



computing annual spatially averaged means, years containing quarters



with at least 11 samples but less than 75 percent data completeness



shall be included in the computation if the resulting spatially



averaged annual mean concentration (rounded according to the



conventions of section 2.3 of this appendix) is greater than the



level of the standard.



    (c) Situations may arise in which there are compelling reasons



to retain years containing quarters which do not meet the data



completeness requirement of 75 percent or the minimum number of 11



samples. The use of less than complete data is subject to the



approval of the appropriate Regional Administrator.



    (d) The equations for calculating the 3-year average annual mean



of the PM2.5 standard are given in section 2.5 of this



appendix.



    2.2 24-Hour PM2.5 Standard.



    (a) The 24-hour PM2.5 standard is met when the 3-year



average of the 98th percentile values at each monitoring



site is less than or equal to 65 g/m3. This



comparison shall be based on 3 consecutive, complete years of air



quality data. A year meets data completeness requirements when at



least 75 percent of the scheduled sampling days for each quarter



have valid data. However, years with high concentrations shall not



be ignored just because they are comprised of quarters with less



than complete data. Thus, in computing the 3-year average



98th percentile value, years containing quarters with



less than 75 percent data completeness shall be included in the



computation if the annual 98th percentile value (rounded



according to the conventions of section 2.3 of this appendix) is



greater than the level of the standard.



    (b) Situations may arise in which there are compelling reasons



to retain years containing quarters which do not meet the data



completeness requirement. The use of less than complete data is



subject to the approval of the appropriate Regional Administrator.



    (c) The equations for calculating the 3-year average of the



annual 98th percentile values is given in section 2.6 of



this appendix.



    2.3 Rounding Conventions. For the purposes of comparing



calculated values to the applicable level of the standard, it is



necessary to round the final results of the calculations described



in sections 2.5 and 2.6 of this appendix. For the annual



PM2.5 standard, the 3-year average of the spatially



averaged annual means shall be rounded to the nearest 0.1



g/m3 (decimals 0.05 and greater are rounded up



to the next 0.1, and any decimal lower than 0.05 is rounded down to



the nearest 0.1). For the 24-hour PM2.5 standard, the 3-



year average of the annual 98th percentile values shall



be rounded to the nearest 1 g/m3 (decimals 0.5



and greater are rounded up to nearest whole number, and any decimal



lower than 0.5 is rounded down to the nearest whole number).



    2.4 Monitoring Considerations.



    (a) Section 58.13 of this chapter specifies the required minimum



frequency of sampling for PM2.5. Exceptions to the



specified sampling frequencies, such as a reduced frequency during a



season of expected low concentrations, are subject to the approval



of the appropriate Regional Administrator. Section 58.14 of 40 CFR



part 58 and section 2.8 of Appendix D of 40 CFR part 58, specify



which monitors are eligible for making comparisons with the PM



standards. In determining a spatial mean using two or more



monitoring sites operating in a given year, the annual mean for an



individual site may be included in the spatial mean if and only if



the mean for that site meets the criterion specified in Sec. 2.8 of



Appendix D of 40 CFR part 58. In the event data from an otherwise



eligible site is excluded from being averaged with data from other



sites on the basis of this criterion, then the 3-year mean from that



site shall be compared directly to the annual standard.



    (b) For the annual PM2.5 standard, when designated



monitors are located at the same site and are reporting



PM2.5 values for the same time periods, and when spatial



averaging has been chosen, their concentrations shall be averaged



before an area-wide spatial average is calculated. Such monitors



will then be considered as one monitor.



    2.5 Equations for the Annual PM2.5 Standard.



    (a) An annual mean value for PM2.5 is determined by



first averaging the daily values of a calendar quarter:







Equation 1



[GRAPHIC] [TIFF OMITTED] TR18JY97.000







where:







xq,y,s = the mean for quarter q of year y for site s;







nq = the number of monitored values in the quarter; and







xi,q,y,s = the ith value in quarter q for year



y for site s.







    (b) The following equation is then to be used for calculation of



the annual mean:







Equation 2



[GRAPHIC] [TIFF OMITTED] TR18JY97.001







where:







xy,s = the annual mean concentration for year y (y = 1,



2, or 3) and for site s; and







xq,y,s = the mean for quarter q of year y for site s.







    (c) (1) The spatially averaged annual mean for year y is



computed by first calculating the annual mean for each site



designated to be included in a spatial average, xy,s, and



then computing the average of these values across sites:







Equation 3



[GRAPHIC] [TIFF OMITTED] TR18JY97.002







where:







xy = the spatially averaged mean for year y;







xy,s = the annual mean for year y and site s; and







ns = the number of sites designated to be averaged.







    (2) In the event that an area designated for spatial averaging



has two or more sites at the same location producing data for the



same time periods, the sites are averaged together before using



Equation 3 by:







Equation 4



[GRAPHIC] [TIFF OMITTED] TR18JY97.003







where:







xy,s* = the annual mean for year y for the sites at the



same location (which will now be considered one site);







[[Page 38757]]







nc = the number of sites at the same location designated



to be included in the spatial average; and







xy,s = the annual mean for year y and site s.







    (d) The 3-year average of the spatially averaged annual means is



calculated by using the following equation:







Equation 5



[GRAPHIC] [TIFF OMITTED] TR18JY97.004







where:







x = the 3-year average of the spatially averaged annual means; and







xy = the spatially averaged annual mean for year y.







Example 1--Area Designated for Spatial Averaging That Meets the



Primary Annual PM2.5 Standard.







    a. In an area designated for spatial averaging, four designated



monitors recorded data in at least 1 year of a particular 3-year



period. Using Equations 1 and 2, the annual means for



PM2.5 at each site are calculated for each year. The



following table can be created from the results. Data completeness



percentages for the quarter with the fewest number of samples are



also shown.







                                                        Table 1.--Results from Equations 1 and 2



--------------------------------------------------------------------------------------------------------------------------------------------------------



                                                                                       Site #1       Site #2       Site #3       Site #4    Spatial mean



--------------------------------------------------------------------------------------------------------------------------------------------------------



Year 1.........................................  Annual mean (g/m\3\)....          12.7  ............  ............  ............         12.7



                                                 % data completeness..............          80             0             0             0    ............



Year 2.........................................  Annual mean (g/m\3\)....          12.6          17.5          15.2  ............         15.05



                                                 % data completeness..............          90            63            38             0    ............



Year 3.........................................  Annual mean (g/m\3\)....          12.5          18.5          14.1          16.9         15.50



                                                 % data completeness..............          90            80            85            50    ............



3-year mean....................................  .................................  ............  ............  ............  ............         14.42



--------------------------------------------------------------------------------------------------------------------------------------------------------







    b. The data from these sites are averaged in the order described



in section 2.1 of this appendix. Note that the annual mean from site



#3 in year 2 and the annual mean from site #4 in year 3 do not meet



the 75 percent data completeness criteria. Assuming the 38 percent



data completeness represents a quarter with fewer than 11 samples,



site #3 in year 2 does not meet the minimum data completeness



requirement of 11 samples in each quarter. The site is therefore



excluded from the calculation of the spatial mean for year 2.



However, since the spatial mean for year 3 is above the level of the



standard and the minimum data requirement of 11 samples in each



quarter has been met, the annual mean from site #4 in year 3 is



included in the calculation of the spatial mean for year 3 and in



the calculation of the 3-year average. The 3-year average is rounded



to 14.4 g/m3, indicating that this area meets



the annual PM2.5 standard.







Example 2--Area With Two Monitors at the Same Location That Meets



the Primary Annual PM2.5 Standard.







    a. In an area designated for spatial averaging, six designated



monitors, with two monitors at the same location (#5 and #6),



recorded data in a particular 3-year period. Using Equations 1 and



2, the annual means for PM2.5 are calculated for each



year. The following table can be created from the results.







                                                        Table 2.--Results From Equations 1 and 2



--------------------------------------------------------------------------------------------------------------------------------------------------------



                                                                                                                                  Average of    Spatial



           Annual mean (g/m\3\)              Site #1      Site #2      Site #3      Site #4      Site #5      Site #6     #5 and #6     mean



--------------------------------------------------------------------------------------------------------------------------------------------------------



Year 1............................................         12.9          9.9         12.6         11.1         14.5         14.6       14.55       12.21



Year 2............................................         14.5         13.3         12.2         10.9         16.1         16.0       16.05       13.39



Year 3............................................         14.4         12.4         11.5          9.7         12.3         12.1       12.20       12.04



3-Year mean.......................................  ...........  ...........  ...........  ...........  ...........  ...........  ..........       12.55



--------------------------------------------------------------------------------------------------------------------------------------------------------







    b. The annual means for sites #5 and #6 are averaged together



using Equation 4 before the spatial average is calculated using



Equation 3 since they are in the same location. The 3-year mean is



rounded to 12.6 g/m3, indicating that this area



meets the annual PM2.5 standard.







Example 3--Area With a Single Monitor That Meets the Primary Annual



PM2.5 Standard.







    a. Given data from a single monitor in an area, the calculations



are as follows. Using Equations 1 and 2, the annual means for



PM2.5 are calculated for each year. If the annual means



are 10.28, 17.38, and 12.25 g/m3, then the 3-



year mean is:



[GRAPHIC] [TIFF OMITTED] TR18JY97.005







    b. This value is rounded to 13.3, indicating that this area



meets the annual PM2.5 standard.



    2.6 Equations for the 24-Hour PM2.5 Standard.



    (a) When the data for a particular site and year meet the data



completeness requirements in section 2.2 of this appendix,



calculation of the 98th percentile is accomplished by the



following steps. All the daily values from a particular site and



year comprise a series of values (x1, x2,



x3, ..., xn), that can be sorted into a series



where each number is equal to or larger than the preceding number



(x[1], x[2], x[3], ...,



x[n]). In this case, x[1] is the smallest



number and x[n] is the largest value. The 98th



percentile is found from the sorted series of daily values which is



ordered from the lowest to the highest number. Compute (0.98)  x



(n) as the number ``i.d'', where ``i'' is the integer part of the



result and ``d'' is the decimal part of the result. The



98th percentile value for year y, P0.98, y, is



given by Equation 6:







Equation 6



[GRAPHIC] [TIFF OMITTED] TR18JY97.006







where:



P0.98,y = 98th percentile for year y;







x[i+1] = the (i+1)th number in the ordered



series of numbers; and







i = the integer part of the product of 0.98 and n.







[[Page 38758]]







    (b) The 3-year average 98th percentile is then



calculated by averaging the annual 98th percentiles:







Equation 7



[GRAPHIC] [TIFF OMITTED] TR18JY97.007







    (c) The 3-year average 98th percentile is rounded



according to the conventions in section 2.3 of this appendix before



a comparison with the standard is made.







Example 4--Ambient Monitoring Site With Every-Day Sampling That



Meets the Primary 24-Hour PM2.5 Standard.







    a. In each year of a particular 3 year period, varying numbers



of daily PM2.5 values (e.g., 281, 304, and 296) out of a



possible 365 values were recorded at a particular site with the



following ranked values (in g/m3):







                                  Table 3.--Ordered Monitoring Data For 3 Years



----------------------------------------------------------------------------------------------------------------



               Year 1                                Year 2                                Year 3



----------------------------------------------------------------------------------------------------------------



      j rank            Xj value            j rank            Xj value            j rank            Xj value



----------------------------------------------------------------------------------------------------------------



275..............            57.9                296               54.3                290               66.0



276..............            59.0                297               57.1                291               68.4



277..............            62.2                298               63.0                292               69.8



----------------------------------------------------------------------------------------------------------------







    b. Using Equation 6, the 98th percentile values for



each year are calculated as follows:



[GRAPHIC] [TIFF OMITTED] TR18JY97.008







 [GRAPHIC] [TIFF OMITTED] TR18JY97.009







 [GRAPHIC] [TIFF OMITTED] TR18JY97.010







    c. 1. Using Equation 7, the 3-year average 98th



percentile is calculated as follows:



[GRAPHIC] [TIFF OMITTED] TR18JY97.011







    2. Therefore, this site meets the 24-hour PM2.5



standard.



3.0 Comparisons with the PM10 Standards.



    3.1 Annual PM10 Standard.



    (a) The annual PM10 standard is met when the 3-year



average of the annual mean PM10 concentrations at each



monitoring site is less than or equal to 50 g/



m3. The 3-year average of the annual means is determined



by averaging quarterly means to obtain annual mean PM10



concentrations for 3 consecutive, complete years at each monitoring



site. The steps can be summarized as follows:



    (1) Average 24-hour measurements to obtain a quarterly mean.



    (2) Average quarterly means to obtain an annual mean.



    (3) Average annual means to obtain a 3-year mean.



    (b) For the annual PM10 standard, a year meets data



completeness requirements when at least 75 percent of the scheduled



sampling days for each quarter have valid data. However, years with



high concentrations and more than a minimal amount of data (at least



11 samples in each quarter) shall not be ignored just because they



are comprised of quarters with less than complete data. Thus, in



computing the 3-year average annual mean concentration, years



containing quarters with at least 11 samples but less than 75



percent data completeness shall be included in the computation if



the annual mean concentration (rounded according to the conventions



of section 2.3 of this appendix) is greater than the level of the



standard.



    (c) Situations may arise in which there are compelling reasons



to retain years containing quarters which do not meet the data



completeness requirement of 75 percent or the minimum number of 11



samples. The use of less than complete data is subject to the



approval of the appropriate Regional Administrator.



    (d) The equations for calculating the 3-year average annual mean



of the PM10 standard are given in section 3.5 of this



appendix.



    3.2 24-Hour PM10 Standard.



    (a) The 24-hour PM10 standard is met when the 3-year



average of the annual 99th percentile values at each



monitoring site is less than or equal to 150 g/



m3. This comparison shall be based on 3 consecutive,



complete years of air quality data. A year meets data completeness



requirements when at least 75 percent of the scheduled sampling days



for each quarter have valid data. However, years with high



concentrations shall not be ignored just because they are comprised



of quarters with less than complete data. Thus, in computing the 3-



year average of the annual 99th percentile values, years



containing quarters with less than 75 percent data completeness



shall be included in the computation if the annual 99th



percentile value (rounded according to the conventions of section



2.3 of this appendix) is greater than the level of the standard.



    (b) Situations may arise in which there are compelling reasons



to retain years containing quarters which do not meet the data



completeness requirement. The use of less than complete data is



subject to the approval of the appropriate Regional Administrator.



    (c) The equation for calculating the 3-year average of the



annual 99th percentile values is given in section 2.6 of



this appendix.



    3.3 Rounding Conventions. For the annual PM10



standard, the 3-year average of the annual PM10 means



shall be rounded to the nearest 1 g/m3 (decimals



0.5 and greater are







[[Page 38759]]







rounded up to the next whole number, and any decimal less than 0.5



is rounded down to the nearest whole number). For the 24-hour



PM10 standard, the 3-year average of the annual



99th percentile values of PM10 shall be



rounded to the nearest 10 g/m3 (155 g/



m3 and greater would be rounded to 160 g/



m3 and 154 g/m3 and less would be



rounded to 150 g/m3).



    3.4 Monitoring Considerations. Section 58.13 of this chapter



specifies the required minimum frequency of sampling for



PM10. Exceptions to the specified sampling frequencies,



such as a reduced frequency during a season of expected low



concentrations, are subject to the approval of the appropriate



Regional Administrator. For making comparisons with the



PM10 NAAQS, all sites meeting applicable requirements in



part 58 of this chapter would be used.



    3.5 Equations for the Annual PM10 Standard.



    (a) An annual arithmetic mean value for PM10 is



determined by first averaging the 24-hour values of a calendar



quarter using the following equation:







Equation 8



[GRAPHIC] [TIFF OMITTED] TR18JY97.012







where:



xq,y = the mean for quarter q of year y;







nq = the number of monitored values in the quarter; and







xi,q,y = the ith value in quarter q for year



y.







    (b) The following equation is then to be used for calculation of



the annual mean:







Equation 9



[GRAPHIC] [TIFF OMITTED] TR18JY97.013







where:







xy = the annual mean concentration for year y, (y=1, 2,



or 3); and







xq,y = the mean for a quarter q of year y.







    (c) The 3-year average of the annual means is calculated by



using the following equation:







Equation 10



[GRAPHIC] [TIFF OMITTED] TR18JY97.014







where:







x = the 3-year average of the annual means; and







xy = the annual mean for calendar year y.







Example 5--Ambient Monitoring Site That Does Not Meet the Annual



PM10 Standard.







    a. Given data from a PM10 monitor and using Equations



8 and 9, the annual means for PM10 are calculated for



each year. If the annual means are 52.42, 82.17, and 63.23



g/m3, then the 3-year average annual mean is:



[GRAPHIC] [TIFF OMITTED] TR18JY97.015







    b. Therefore, this site does not meet the annual PM10



standard.



    3.6 Equation for the 24-Hour PM10 Standard.



    (a) When the data for a particular site and year meet the data



completeness requirements in section 3.2 of this appendix,



calculation of the 99th percentile is accomplished by the



following steps. All the daily values from a particular site and



year comprise a series of values (x1, x2,



x3, ..., xn) that can be sorted into a series



where each number is equal to or larger than the preceding number



(x[1], x[2], x[3], ...,



x[n]). In this case, x[1] is the smallest



number and x[n] is the largest value. The 99th percentile



is found from the sorted series of daily values which is ordered



from the lowest to the highest number. Compute (0.99)  x  (n) as the



number ``i.d'', where ``i'' is the integer part of the result and



``d'' is the decimal part of the result. The 99th



percentile value for year y, P0.99,y, is given by



Equation 11:







Equation 11



[GRAPHIC] [TIFF OMITTED] TR18JY97.016







where:







P0.99,y = the 99th percentile for year y;







x[i+1] = the (i+1)th number in the ordered



series of numbers; and







i = the integer part of the product of 0.99 and n.







    (b) The 3-year average 99th percentile value is then



calculated by averaging the annual 99th percentiles:







Equation 12



[GRAPHIC] [TIFF OMITTED] TR18JY97.017







    (c) The 3-year average 99th percentile is rounded



according to the conventions in section 3.3 of this appendix before



a comparison with the standard is made.







Example 6--Ambient Monitoring Site With Sampling Every Sixth Day



That Meets the Primary 24-Hour PM10 Standard.







    a. In each year of a particular 3 year period, varying numbers



of PM10 daily values (e.g., 110, 98, and 100) out of a



possible 121 daily values were recorded at a particular site with



the following ranked values (in g/m3):







                                  Table 4.--Ordered Monitoring Data For 3 Years



----------------------------------------------------------------------------------------------------------------



               Year 1                                Year 2                                Year 3



----------------------------------------------------------------------------------------------------------------



      j rank            Xj value            j rank            Xj value            j rank            Xj value



----------------------------------------------------------------------------------------------------------------



108..............             120                 96                143                 98                140



109..............             128                 97                148                 99                144



110..............             130                 98                150                100                147



----------------------------------------------------------------------------------------------------------------







    b. Using Equation 11, the 99th percentile values for



each year are calculated as follows:



[GRAPHIC] [TIFF OMITTED] TR18JY97.018







 [GRAPHIC] [TIFF OMITTED] TR18JY97.019







[[Page 38760]]







[GRAPHIC] [TIFF OMITTED] TR18JY97.020







    c. 1. Using Equation 12, the 3-year average 99th



percentile is calculated as follows:



[GRAPHIC] [TIFF OMITTED] TR18JY97.021







    2. Therefore, this site meets the 24-hour PM10



standard.







[FR Doc. 97-18577 Filed 7-17-97; 8:45 am]



BILLING CODE 6560-50-F







| First Page | Prev Page | Next Page | Back to Text |